

Year 11 Investigating Science Cause and Effect - Inferences and Generalisations (Depth Study modelling) A collaborative practical investigation @ Penrith Lakes

Key Inquiry Question: What inferences can be drawn from observations?

Students:

- conduct a collaborative practical investigation
- collect a range of qualitative and quantitative primary water quality data of a pond/lake
- make inferences and conclusions derived from the primary data collected in this collaborative practical investigation

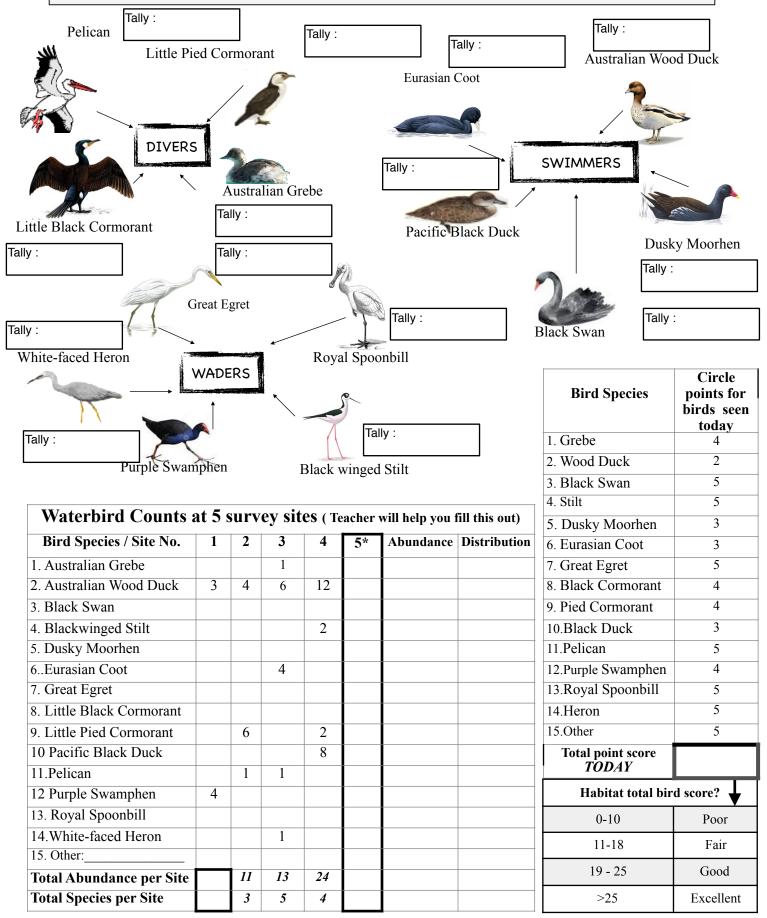
Name _____

Inquiry Question: How healthy is the Ecosystem at Penrith Lakes?

STATION 1 Abiotic Factors

Use water testing kit to collect abiotic data for this site.

Site:	Conditions:	Date:	Time:
Final Detention Basin			


Factor	Equipment Used / Units	Your small group results	Average results for your group	
1. Phosphate (Nutrient) - Half fill tube. Dissolve tablet. Wait 5 mins. Compare water to chart.	Test tablet kit - ppm (Parts per million)			
2. Water pH - (Blue box) Fill tube. 3cm of paper in tube. Wait 1 min. Compare paper to chart.	Universal Indicator Paper - a number			
3. Turbidity	Turbidity Tube - NTU's (Nephelometric Turbidity Units)			
4. Water Temperature	Digital Thermometer - °C (Degrees Celsius)			
5. Dissolved Oxygen - <i>mg/l is the reading on DO meter.</i>	Dissolved Oxygen Meter (Milligrams per Litre)	mg/L	mg/L	
Use conversion chart to get % sat.	Conversion Chart - Temp, mg/L and % (% saturation)	% saturation	% saturation	
6. Conductivity or Total Dissolved Solids (Salts)	Total Dissolved Solids (TDS) Scan- ppm (Parts per million)			
7. Light	Light / Lux Meter - Lux			
8. Slope	Clinometer - Degrees (°)			
9. Wind exposure (speed)	Anemometer - kph			
10. Water Depth	General knowledge of lakes.	4r	n	
11. Visual Pollution	Visual Assessment. Use your eyes.	Circle the appropriate		
12. Water Source		Groundwater and run-off		

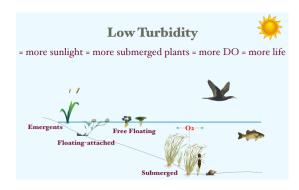
STATION 2 Dipnetting

Invertebrate population sampling - (Results given in wrap up)

STATION 3 Waterbird Observation

- 1. On your walk Look at the bird pictures.
- 2. Keep a tally of the number of birds sighted for each species.
- 3. Using column 5, fill in the bird numbers seen today. The teacher will guide you. Use this to work out abundance/distribution and then a habitat/food supply point score.

Wrap Up


Analysis of abiotic and biotic key relationships

Turbidity, Light and Dissolved Oxygen

- The final basin has low turbidity (abiotic factor).
- An \uparrow sunlight (abiotic factor) $\rightarrow \uparrow$ aquatic plants (biotic factor) $\rightarrow \uparrow$ D.O.(abiotic factor) \rightarrow
- ↑ invertebrates/aquatic life (biotic factor).

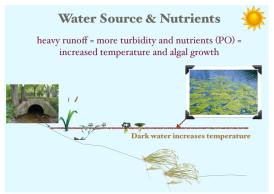
Note: a minimum of 60% D.O is essential for gill breathers such as dragonfly nymphs.

• Farming past : \uparrow turbidity $\rightarrow \downarrow$ sunlight $\rightarrow \downarrow$ aquatic plants $\rightarrow \downarrow$ D.O. $\rightarrow \downarrow$ invertebrates.



Phosphate and Water Source

- Phosphate is an essential nutrient for plant growth. It is a plant food. Too much food can cause problems.
- \uparrow urban runoff (main water source for the lakes) \rightarrow
- ↑ phosphate levels (>2) → ↑ risk of blue green algae outbreaks.

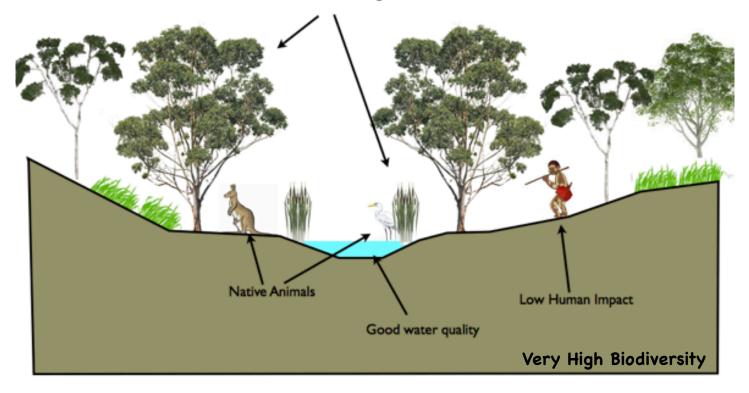

Note: A series of large detention basins/lakes has been constructed upstream so that the plants in those can remove excess phosphate (and other impurities) from the water prior to it being allowed into the main lakes.

Farming past : ↑ phosphate levels (>2)→↑ algae →
 ↓ aquatic plants →↓ D.0. →↓ invertebrates.

A Key Submerged Aquatic Plant Species - Ribbonweed

- ↑ sunlight + low turbidity → Ribbonweed
 ↑ dissolved oxygen →↑ aquatic animals.
- Long strands provide shelter for fish and food for snails and other invertebrates.
- Roots take up nutrients, such as phosphate.
- The presence of ribbonweed indicates the waterbody is in good condition.

pH and Conductivity/Salinity

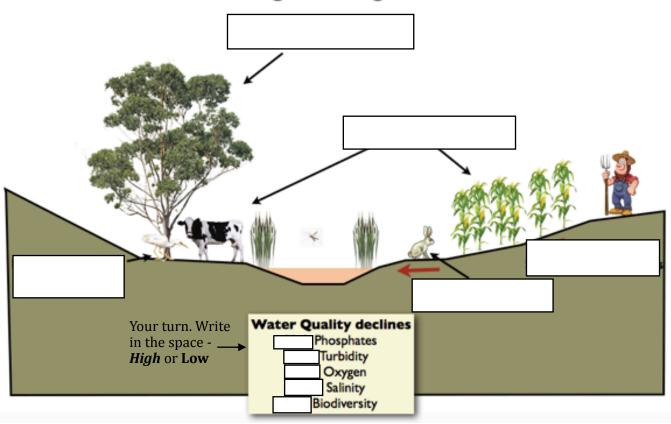

- pH is a measure of the hydrogen ion concentration in water. Most aquatic organisms can only survive in the 6-9 pH range. Low pH values are acidic and kill aquatic life.

Temperature and Light

- Water temperature is directly dependent on sunlight availability, air temperature and turbidity.
- •Temperature affects vital biochemical processes within aquatic organisms and ultimately their survival.
- Most organisms can only tolerate a narrow temperature range.
 - 10 30°C = optimal range for macro invertebrates.
 - In warmer water (20 to 30°C), the rate of photosynthesis and plant growth increases. Animal activity also increases .
- Farming past : \uparrow turbidity $\rightarrow \uparrow$ heat absorption $\rightarrow \uparrow$ water temps $\rightarrow \downarrow$ aquatic organisms.

Before White Settlement

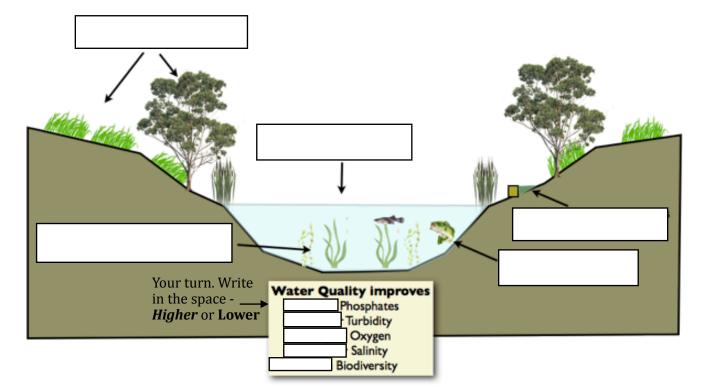
Substantial Native Vegetation



Before White Settlement - Pristine ecosystem (hypothetical measurements)

Turbidity (clarity): <10 ntu					pH: 7						
<10 ntu	10 - 20 ntu	20 - 50 ntu	>50 ntu	6.5 -	8.5	8.6 - 9.0	6	0.0 - 6.4	<6 or >9.0		
8	4	2	0	8		6		4	0		
Light: 25,000 lux				Condu	ctivity	(salts): 80 pp	m				
> 15,000	10k – 15k	5k - 9,999	< 5,000	<250 ppm		<250 ppm		251-650 ppm	651	-1000 ppm	>1000 ppm
8	4	2	0	8		6		4	0		
Dissolved Ox	(ygen: 90%			Phosphate (nutrients): 0.5 ppm							
>60%	50% - 60%	40% - 49%	<40 %	0 - 1 ppm >1 - 2 ppm >2 - 3 ppm >3 -		>3 - 4 ppm					
8	6	2	0	8		6		2	0		
Overall Rati	ng Exc	cellent	Good	d Fair Poor		Poor					
Score : 48		40+	32 - 39	39 31 - 20 less t		than 20					

Summary – Low turbidity Low phosphates High oxygen Low salinity High native biodiversity


During Farming Era

During the Farming Era

Turbidity (clarity): 250 ntu					8.6				
<10 ntu	10 - 20 ntu	20 - 50 ntu	>50 ntu	6.5	- 8.5	8.6 - 9.0		6.0 - 6.4	<6 or >9.0
8	4	2	0		8	6		4	0
Light: 3,800 lux			Conductivity (salts): 950 ppm						
> 15,000	10k – 15k	5k – 9,999	< 5,000	<250) ppm	251-650 ppm	651	-1000 ppm	>1000 ppm
8	4	2	0		8	6	(4	0
Dissolved Ox	Dissolved Oxygen: 25%			Phosphate (nutrients): 2.5 ppm					
>60%	50% - 60%	40% - 49%	<40 %	0 - 1	l ppm	>1 - 2 ppm	>2	2 – 3 ppm	>3 - 4 ppm
8	6	2	0		8	6	(2	0
Overall Ratin	ng Exc	ellent	Good	Fair		t	oor		
Score : 12	4	¥0+	32 - 39	9 31 - 20 less tha		than 20			

After Quarrying - Now & Future

After Quarrying - Now and the Future

Todays results

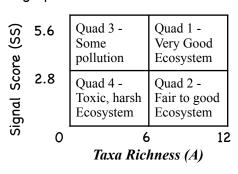
Turbidity (cl	arity):	r	ntu	pH:					
<10 ntu	10 - 20 ntu	20 - 50 ntu	>50 ntu	6.5 -	- 8.5	8.6 - 9.0	6	.0 - 6.4	<6 or >9.0
8	4	2	0	8	3	6		4	0
Light: lux				Conductivity (salts): ppm				n	
> 15,000	10k – 15k	5k - 9,999	< 5,000	<250	ppm	251-650 ppm	651-	-1000 ppm	>1000 ppm
8	4	2	0	8 6			4	0	
Dissolved Ox	Dissolved Oxygen: %			Phosphate (nutrients): ppm			m		
>60%	50% - 60%	40% - 49%	<40 %	0 - 1	ppm	>1 - 2 ppm	>2	– 3 ppm	>3 - 4 ppm
8	6	2	0	8	3	6		2	0
Overall Rati	ng Exc	cellent	Good	ood Fair Po		Poor			
Score :		40+	32 - 39	9		31 - 20		less	than 20

Conclusions from waterbug sampling

Step 1 - With the help of the instructing teacher-fill out the table of the total waterbug survey results.

Name, picture & Sensitivity Rating	No. Bugs	Circle S.R.	Name, picture & Sensitivity Rating	No. Bugs	<i>Circle</i> S.R.
Back Swimmer		4	Water Beetle		3
Caddisfly Zarvae		6	Water Boatman		4
Damselfly Nymph		6	Water Mite		5
Dragonfly Nymph		6	Water Scorpion		3
Freshwater Shrimp		6	Water Spider		4
Giant Water Bug		4	Water Treader		4
Leech		3	Worm		2
Mayfly Nymph		7	Mosquito Fish (vertebrate)		1
Pond Snail		3	Other		
Total Bug SPECIES caug (This is a TAXA RICHNE		Α	Total Sensitivity Rating (This is a POLLUTION IN		В
Calculate a SIGNAL SCORE (S.S.). Signal Score = Pollution Index (B) 🛨 Taxa Richness (A)				S.S. =	

Interpreting your results using an UNWEIGHTED Signal Score.

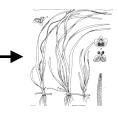

Step 2

Using your signal score, determine a pollution rating. Use the table below.

Signal Score	Pollution Rating
> 3.5	Healthy Habitat
2.8 to 3.5	Mild
2.1 to 2.7	Moderate
< 2.1	Severe

Step 3

A pollution indicator graph. Use your Signal Score and Taxa Richness to plot a point on the graph below.



	Summary from Farming to Now						
	Past farming	Now and Future					
В	<i>Edge</i> plants dominate						
	<i>Low</i> oxygen waterbugs						
T I	Wading birds dominate						
C	<i>Few</i> Mosquito Fish	(In warmer months)					
	<i>Low</i> biodiversity						
A B	<i>High</i> phosphates						
I	<i>High</i> turbidity						
O T	<i>Low</i> dissolved oxygen						
C I	<i>High s</i> alinity						

Keystone Species

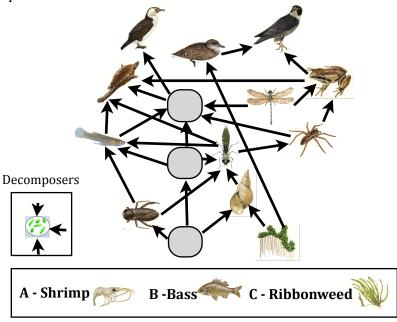
- Submerged aquatic plants
 - E.g. Ribbonweed

These plants take nutrients out of the water. When they carry out photosynthesis the oxygen goes directly into the water. The plants are a source of food (a producer) and oxygen.

A local extinction event - due to predation

Vs

Mosquito Fish


Green and Gold Bell Frog

Mosquito Fish

- * Brought in to control ______.
- * Eats a range of _____
- * Responsible for _____ loss (frogs).
- * Tolerates ______ water quality.
- * _____ quickly.
- * Difficult to _____.

Food Web - Place the letter of the 3 missing species

General note taking on the day