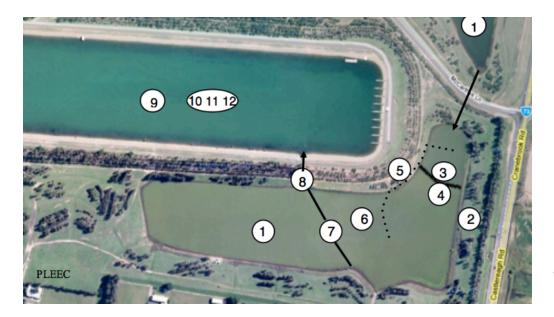

Stage 4 Geography Water in the World – **Half Day**

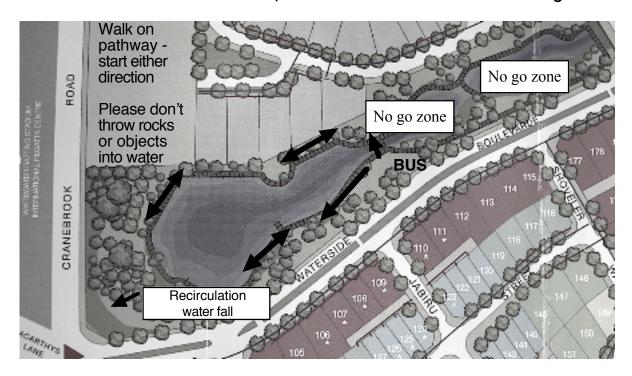
Outcomes:

- 1. **GE4-1** Locates and describes the diverse features and characteristics of a range of places and environments.
- 2. **GE4-3** Explains how interactions and connections between people, places and environments result in change.
- 3. **GE4-5** Discusses management of places and environments for their sustainability.
- 4. **GE4-7** Acquires and processes geographical information by selecting and using geographical tools for inquiry.

Student Name: _____

Case Study: Water Management at Penrith Lakes


Water Management Walk


Before reaching the Final ______ Basin, stormwater has been treated at a number of sites and slowed down by the ______ of ponds. Within the Final Detention Basin there are some further water management practices in place to ensure the stormwater is clean enough for recreational use. For sustainable recreational water a well balanced native ______ needs to be in place.

	Problem	Effects on water quality	Management
A	High nutrient run off	Encourages algal blooms.	 (2) wetlands (use up nutrients) (3) Floating Treatment
В	Excessive sediment from land clearing and non sealed areas	Causes turbid (brown) water which raises water temperature and lower O2 by blocking sunlight.	 (4) A silt (filters sediment). (2) wetlands (slows inflow). (1) Detention basin system and sluice gate.
С	(high water surface temperatures and low bottom temperatures)	Stratified water (low O2 at bottom level) releases from "floor" sediment. Warm top layer encourages algal blooms.	 (5) An and hoses create currents to mix water. (6) Remote temperature sensor (yellow floating instrument with solar panels) triggers the air pump.
D	Petrochemicals (e.g. oil) and litter	Harmful impacts on ecosystem life. Blocks sunlight (low O2).	(7) A trash holds back oil and litter.
E	Polluted storm water/ storm events	First flush run-off brings pollutants. Large flows can exceed basin capacity.	(8) gate can be closed for pollutants or opened during flooding/ storms.
F	European (introduced fauna)	High – stirs up sediments and rips out water plants which leads to lower O2 and higher nutrients.	Electro-fishing (in the past). (9) Stocking the lakes with (biological control)
G	Hydrilla (native flora)	Hydrilla canopies lower O2 by blocking sunlight. Chokes out plants.	 (10) Weed (11) Selective (12) Covering with mats.

Word List

sluice; chain; harvesting; air pump; detention; stratification; nutrients; turbidity; boom; carp; blue-green; perched; bass; wetlands; native; screen; ecosystem; spraying

Waterside - A case study of "Water Sensitive Urban Design"

Picture 2: Waterside Location Map and Pathways

The "Waterside" development is being built by Stockland and is made up of two areas – Corporate (Employment) and Residential. Waterside Corporate covers 12.5ha of developable land providing valuable employment. The residential area of Waterside covers 54ha. There will be 686 lots available. The estimated population is 2,150 persons. The public open space will cover 11 ha and the lakes another 11 ha.

Waterside has been planned around a series of lakes that are designed to provide amenity to the estate as well as water quality improvements.

Central to Waterside is the practice of "Water Sensitive Urban Design" (WSUD). This involves the management and protection of stormwater.

Key principles of WSUD (fill in the blank spaces below):

- 1. Protect ______ systems
- 2. Protect ______ quality (e.g. chain of ponds to begin water filtration)
- 3. Integrate ______ treatment into the landscape
- 4. Reduce _____ and peak flows
- 5. Add value while ______ development costs (e.g. water drains to centre of road)
- 6. Reduce ______ water demand (e.g. rainwater tanks for gardening)

What role does each feature play in Water Management?

Raingardens:		
Raingardens have rain	water directed into them	from the They reduce the amount and
increase the quality of	: that w	yould otherwise wash large amounts of
i	nto the stormwater drain	. They also providefor native fauna.
Rip Raps:		
At this location the la	ke is divided into sections	. The contours fall from west to east which creates
I	n between each section a	re known as rip raps. The water
movement over rip rap	os put	_ into the water.
Housing Layout:		
This involves a more _	form of a	development, which reduces surfaces that cannot
wate	r and help protect the _	quality. Having double storey homes on smaller
blocks means there is	more space available for	areas, e.g. buffer zones.
Road Layout:		
Run-off from roads is	directed onto	surfaces, e.g. gardens, for watering purposes and to
stormw	ater flow. Drainage from	roads goes to one side (decreasing pipework) and roads
tend to be	(decreasing imp	ervious surfaces). A major advantage, apart from reducing
flows, is the reduced	·	
Buffer Zones:		
Buffer Zones are mad	e up of native/_	and herbs /grasses near ponds. Buffer Zones slow
down the	and allow infi	ltration. Excess are taken out of the
water by the plants' r	oot system	is held back by buffer zone.
Macrophyte (large wa	iter plants) Zone:	
This area is usually oc	cupied by	(at waters edge) and
(underwater) aquatic p	plants. The plants take up	or convert the nutrients (and
). Other pollutants taken	up even include oil.
Rainwater Tanks:		
Rainwater tanks use s	tormwater as a	around the home as well as reducing urban
		purposes. A device
manages the supply of	stored rainwater to appr	ropriate uses in your house
Recirculation Fountain	ı / Waterfall:	
		are collected in a
		his waterfall which has two major functions :

2. Add ______to the water as indicated by the white bubbles.